School Students' Preparation for Calculus in the United States

Keywords: Transition to Calculus; Mathematical Meanings for Teaching; International Comparisons; Precalculus Textbook Analysis

Abstract: Researchers have been interested in students' transition to calculus since the late 1800s. One such line of inquiry highlights students' understandings of high school mathematics as impeding or supporting their successful transition to university mathematics. This paper addresses an underlying question in this line of inquiry: does school mathematics provide opportunities for students to develop productive meanings for calculus? This article reports on U.S. calculus students' responses to items that assessed students' variational reasoning, meanings for average rate of change, and representational use of notation—ideas ostensibly addressed in school mathematics. To make sense of students' difficulty on these items we sought to understand the opportunities students had to reason with these ideas prior to calculus. We use two data sources to understand the likelihood that students had opportunities to construct propitious meanings for function notation, variation, and average rate of change in their secondary mathematics education: meanings for these ideas supported by precalculus textbooks and meanings secondary teachers demonstrated. Our analysis revealed a disconnect between meanings productive for learning calculus and the meanings conveyed by textbooks and held by U.S. high school teachers. We include a comparison of meanings held by U.S. and Korean teachers to highlight that these meanings are culturally embedded in the U.S. educational system and not epistemologically necessary. (Click here for article)

" />

Kristin Frank & Pat Thompson

11.06.2021

School Students' Preparation for Calculus in the United States

Keywords: Transition to Calculus; Mathematical Meanings for Teaching; International Comparisons; Precalculus Textbook Analysis

Abstract: Researchers have been interested in students' transition to calculus since the late 1800s. One such line of inquiry highlights students' understandings of high school mathematics as impeding or supporting their successful transition to university mathematics. This paper addresses an underlying question in this line of inquiry: does school mathematics provide opportunities for students to develop productive meanings for calculus? This article reports on U.S. calculus students' responses to items that assessed students' variational reasoning, meanings for average rate of change, and representational use of notation—ideas ostensibly addressed in school mathematics. To make sense of students' difficulty on these items we sought to understand the opportunities students had to reason with these ideas prior to calculus. We use two data sources to understand the likelihood that students had opportunities to construct propitious meanings for function notation, variation, and average rate of change in their secondary mathematics education: meanings for these ideas supported by precalculus textbooks and meanings secondary teachers demonstrated. Our analysis revealed a disconnect between meanings productive for learning calculus and the meanings conveyed by textbooks and held by U.S. high school teachers. We include a comparison of meanings held by U.S. and Korean teachers to highlight that these meanings are culturally embedded in the U.S. educational system and not epistemologically necessary. (Click here for article)